Mark scheme - Circular Motion

Questio n		Answer/Indicative content	Mark s	Guidance
1		A	1	
		Total	1	
2		B	1	
		Total	1	
3		(Resultant) Force acts perpendicularly to the direction of motion	B1	
		Total	1	
4	a	arrow down through centre of ball labeled weight or W or mg or 1.2 N	B1	zero if any other arrows or forces present Examiner's Comments There were some carelessly drawn arrows on the diagram but otherwise this was done well. There were some arrows labelled centripetal force.
	b i	```(horizontally) mv 2/r (or mr\omega}\mp@subsup{}{2}{2})= sin} and (vertically) W or mg=T cos 0 (tan 0= v tan}0=0.045\times4\times9.87\times2.2 9.81 or 0.48/1.2(= 0.40) 0=22```	M1 A1 A0	accept figures in place of algebra, $\begin{aligned} & \mathrm{r}=0.045 \mathrm{~m} \\ & \mathrm{v}=0.42 \mathrm{~m} \mathrm{~s}^{-1} \omega=3 \pi \mathrm{rad} \mathrm{~s}^{-1} ; \\ & \mathrm{r} \omega^{2}=4.0 \mathrm{~m} \mathrm{~s}^{-2} ; \\ & \mathrm{W}=1.2 \mathrm{~N} \text { and } \mathrm{m}=0.12 \mathrm{~kg} \text { and } \\ & \mathrm{mr} \omega^{2}=0.48 \mathrm{~N} \end{aligned}$ accept labelled triangle of forces diagram N.B. this is a show that Q; sufficient calculation must be present to indicate that the candidate has not worked back from the answer
	ii	$\begin{aligned} & \mathrm{k}=\left(\mathrm{mg} / \mathrm{x}_{0}=1.2 / 0.050\right)=24(\mathrm{~N} \\ & \left.\mathrm{m}^{-1}\right) \\ & (\mathrm{T}=\mathrm{mg} / \cos \theta=\mathrm{kx} \text { giving }) \\ & \mathrm{x}=1.2 / 24 \cos 22 \\ & \mathrm{x}=0.054(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	or solution by ratios Examiner's Comments About half of the candidates completed the angle calculation successfully with a slightly smaller number finding the correct extension of the string.
	c	$\begin{aligned} & \left(y=1 / 2 g t^{2}=\right) 0.18=0.5 \times 9.81 \times t^{2} \\ & \text { giving } t=0.19(s) \\ & (x=v t=) 0.42 \times 0.19=0.08(\mathrm{~m}) \\ & \text { distance }=\sqrt{ }\left(r^{2}+x^{2}\right)=\sqrt{ }(0.0020+ \\ & 0.0064)=0.092(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	alt: projectile motion: $x=v t, y=1 / 2 g^{2}$ $\begin{aligned} & y=1 / 2 g(x / v)^{2} \\ & \text { ecf }(b) i \text { for } v ; x^{2}=2 y^{2} / g \\ & =2 \times 0.18 \times 0.42^{2} / 9.81 \end{aligned}$ Examiner's Comments About half of the candidates found the time for the ball to fall to the bench. Most then managed to find the horizontal distance from the point

					of release, but half forgot that the point of reference in the question was the centre of rotation so failing to complete the calculation.
	d		T increases or string stretches or angle θ increases to provide / create a larger centripetal force	M1	allow $\mathrm{mv}^{2} / \mathrm{r}$ or $\mathrm{mr} \omega^{2}$ in place of centripetal force causality must be implied to gain the A mark Examiner's Comments About half of the candidates appreciated that the tension in the string increased or that the angle of the string to the vertical increased. Most answers gave the impression that the centripetal force was a real force rather than its provision being necessary for the ball to follow a circular path
			Total	12	
5	a	i	$\{v=\omega r \text { and } \omega=2 \pi f\} \text { or } v=2 \pi f r$ Comparison with $y=m x$ leading to gradient $=2 \pi r$ or $\Delta v / \Delta f=2 \pi r$	B1 B1	Allow $\mathrm{v} / \mathrm{f}=2 \pi r$ Examiner's Comments This part tested ideas about investigative experiments: there was a solid focus on elements of data-taking and instruments that should be used. Typically at A Level, analysis should include an appropriate graph and a comparison between the line of best fit and the equation under test. Putting the general equation below the given equation would make it much clearer how the candidate linked the gradient or y-intercept with the required property.
		ii	Line of best fit drawn Gradient $=62.5(\mathrm{~m})$ $\begin{aligned} & 2 \pi r=62.5 \\ & r=9.9(\mathrm{~m}) \end{aligned}$	B1 M1 M1 A0	Allow ± 3 Allow ECF on gradient
		iii	$\begin{aligned} & F=\frac{m v^{2}}{r} \quad \text { or } \quad F=m a \text { and } a= \\ & F=\frac{1.7 \times 10^{-27} \times\left[2.0 \times 10^{7}\right]^{2}}{9.9} \\ & F=6.8 \times 10^{-14}(\mathrm{~N}) \end{aligned}$		Allow use of candidate's answer for (ii) or use of '10' Expect answers of 6.8 or $6.9 \times 10^{-14}(\mathrm{~N})$
	b		```r\proptov\mp@subsup{v}{}{2}/\mathrm{ speed increases by a factor} of \sqrt{}{2} maximum speed = 2.8 < 107 (m s 1)```	C1 A1	Allow substitution into correct equation with r doubled Allow recalculation from previous value of force in (a)(iii)
			Total	10	
6			The force is towards the centre of the circle. The force is perpendicular to the motion or no component of force	B1 B1	

5.2 Circular Motion

5.2 Circular Motion

\begin{tabular}{|c|c|c|c|c|}
\hline \& ii \& \begin{tabular}{l}
\[
=1 /\left(5 \times 10^{5} \times 4.33 \times 10^{-7}\right)=4.6
\] \\
but \(n\) is an integer so \(n=4\)
\end{tabular} \& A1 \& \\
\hline \& \& Total \& 3 \& \\
\hline 1
1 \& \& centripetal force provided by \(B Q v\); hence \(\frac{m v^{2}}{r}=B Q v\)
\[
\begin{aligned}
\& B=\frac{m v}{Q r}=\frac{9.11 \times 10^{-31} \times 5.0 \times 10^{7}}{1.6 \times 10^{-19} \times 0.018} \\
\& B=1.6 \times 10^{-2}(\mathrm{~T})
\end{aligned}
\] \& \begin{tabular}{l}
C1 \\
C1 \\
A1
\end{tabular} \& \\
\hline \& \& Total \& 3 \& \\
\hline \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& \& \[
\begin{aligned}
\& T=60 / 1600 \text { or } T=3.75 \times 10^{-2}(\mathrm{~s}) \\
\& \left(v=\pi \times 0.50 / 3.75 \times 10^{-2}\right) \\
\& \text { speed }=42\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\
\& \text { uncertainty }=3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \& C1
A1

A1 \& | Allow: $\mathrm{f}=26.7$ or ${ }^{\frac{1600}{60}}(\mathrm{~Hz})$ or $\omega=168\left(\mathrm{~s}^{-1}\right)$ |
| :--- |
| Note: v must be to 2 or more SF |
| Note: uncertainty must be to 1 SF |
| Allow: ecf on candidate's value for speed i.e. uncertainty = candidate's value / 16 (to 1 SF) |
| Allow for 2 marks max: $84 \pm 5\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ |
| Examiner's Comments |
| About half of the candidates got this item right or provided clear working to show where they were going. There was much confusion about which quantity was which. 1600 revolutions per minute refers to the frequency of the rotation, not the angular speed, angular frequency or the speed itself. |
| The percentage error of the frequency was 6.25%, prior to rounding. Some candidates multiplied this by their value for the speed to get the correct absolute uncertainty, although good practice is to round uncertainties to 1 SF . |

\hline \& \& Total \& 3 \&

\hline $$
\begin{aligned}
& 1 \\
& 3
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& m=650 / \mathrm{g} \text { or } m=650 / 9.81(=66.3 \\
& \mathrm{kg}) \\
& \left(F=m r \omega^{2} \text { gives }\right) \\
& d=0.050 / m \omega^{2}=0.050 / 66.3 \mathrm{x} \\
& \left(3.5 \times 10^{-3}\right)^{2} \\
& d=62(\mathrm{~m})
\end{aligned}
$$
\] \& C1

C1

A1 \& | Not $m=650 \mathrm{~kg}$ or $m=65 \mathrm{~kg}$ |
| :--- |
| or ($F=m v^{2} / r$ and $v=2 \Pi r / T$ gives) $d=0.050 \times(30 \times 60)^{2} /\left(4 \pi^{2} \times 66.3\right)$ |

\hline \& \& Total \& 3 \&

\hline 4 \& 1 \& $$
\begin{aligned}
& F=5.0 \times 4.8^{2} / 1.5 \\
& F=77(\mathrm{~N})
\end{aligned}
$$ \& C1

A1 \& Allow 76.8 (N)

\hline
\end{tabular}

	ii	$\omega=v / r=4.8 / 1.5$	C1	Allow alternative e.g. $F=m \omega^{2} r$
	ii	$\omega=3.2\left(\mathrm{rad} \mathrm{s}^{-1}\right)$	A1	
		Total	4	
15		$\begin{aligned} & \lambda=\frac{\ln 2}{6600}=1.050 \times 10^{-4}\left(\mathrm{~s}^{-1}\right) \\ & N=\frac{400 \times 10^{6}}{1.050 \times 10^{-4}}=3.809 \times 10^{12} \\ & \text { mass of FDG }=\frac{3.809 \times 10^{12}}{6.02 \times 10^{23}} \times 0.018 \div 0 . \\ & \text { mass of FDG }=1.15 \times 10^{-12}(\mathrm{~kg}) \\ & \text { or } 1.2 \times 10^{-12}(\mathrm{~kg}) \end{aligned}$	C1	Correct use of $A=\lambda N$
			C1	
			C1	
			A1	
		Total	4	
1 6		$\begin{aligned} & \omega^{2}=k / m \text { or } 60 / 0.080 \text { or } \omega^{2}=750 \\ & T=2 \pi / 27.39 \text { or } T=0.2295(\mathrm{~s}) \\ & t=1 / 4 \times 0.2295 \\ & t=0.057(\mathrm{~s}) \end{aligned}$	C1 C1 C1 A1	Allow correct algebraic expression for T Allow incorrect value for omega Allow incorrect value of T
		Total	4	
1 7	i	3 downward arrows correctly labelled.	B1	longest being $4.33 \times 10^{-7}(\mathrm{~m})$
	iiiiii	$\begin{aligned} & \Delta \mathrm{E}=\mathrm{hc} / \lambda \\ & \lambda=6.63 \times 10^{-34} \times 3 \times 10^{8} / 4.8 \times \\ & 10^{-20}=4.1(4) \times 10^{-6}(\mathrm{~m}) \end{aligned}$ region: infra red	C1	
			A1	
			B1	allow ecf if wavelength calculation incorrect.
		Total	4	
1		$\begin{aligned} & y \text {-intercept }=-0.45 \\ & \frac{1}{2} \lg \left(\frac{g k}{4 \pi^{2}}\right)=-0.45 \\ & \left(\frac{g k}{4 \pi^{2}}\right)=10^{-0.9} \\ & k=\frac{0.126 \times 4 \times \pi^{2}}{9.81} \\ & k=0.51 \end{aligned}$	C1 C1 C1 A1	Allow ± 0.05 Allow attempt at calculating y-intercept using gradient and a point on the line. Not $\mathrm{e}^{-0.9}$ wrong physics Allow k in range 0.48 to 0.63 Note Answer must be to 2 SF
		Total	4	
9		There is no contact force between the astronaut and the (floor of the) space station (so no method of measuring / experiencing weight)	B1	Allow astronaut and the space station have same acceleration (towards Earth) / floor is falling (beneath astronaut) Examiner's Comments

5.2 Circular Motion

	ii	Sine wave with period 30 min and amplitude 0.050 (N) Correct phase, i.e. negative sine wave	B1 B1	Must start at the origin
	iii	$\begin{aligned} & F=0.050 \cos 40^{\circ} \\ & F=0.038(\mathrm{~N}) \end{aligned}$	C1 A1	Allow alternative methods e.g. triangle of forces Allow ECF from graph if used
		Total	6	
	i	$\begin{aligned} & F=\left(m v^{2} / r=\right) 8.0 \times 1.5^{2} / 2.0 \\ & F=9.0(\mathrm{~N}) \end{aligned}$	C1	Allow answer to 1s.f. Examiner's Comments Question 4(b)(ii) proved very difficult and highlighted poor understanding of circular motion. Almost all candidates described the centripetal force as an additional force that had appeared out of nowhere. This centripetal force 'pulled the suitcase inwards' (or, in some cases, outwards) or 'balanced the frictional force' or 'added to the frictional force' and so on. Exemplar 5 At $4 p^{\prime}$ the boy's maring in ar are maningthy centrietan forre is ostify on it os wel as wajht grition and the vomial. In norder t, Kepptte bay in equilionimes friction has to incure and Rhan to deveresey os ths centritixf porce worts agaunt quitine (F) and with The candidate who gave the response in Exemplar 5 clearly thinks that an additional force, called the centripetal force, now acts on the suitcase. The forces F and R have to adjust in order to keep the suitcase in equilibrium. They have not realised that the suitcase is no longer in equilibrium horizontally but is accelerating. This means that the available forces have to adjust in order to provide a resultant force towards the centre of the circle, while still balancing vertically. Exemplar 6 The suikicse is now acceleaking fowords the . ceder of the ssericirce. This means there is a ...ed forse acting to the left (on the diagman). Whas no conposerg to .tis left so Frust iseace it to acrelenate allowing ì to slay os course. The rentipecal force requiced is aN so the herizolel conpored of F rust be $9 N$ bigges than he horizonal compoelel of R. The suikese nat not In contrast, the candidate who wrote the response in Exemplar 6 has a much better grasp of the situation.

5.2 Circular Motion

			AfL Rather than using the phrase 'centripetal force', candidates could be encouraged to think of motion in a circle as a special case of $F=m a$ where the resultant force F points towards the centre of the circle and the acceleration a is given by v^{2} / r. This should hopefully encourage them to think about which of the forces available in the situation could provide the resultant force for this motion to occur.
	- Suitcase accelerates / changes its velocity / (constantly) changes direction / has a resultant force acting on it / is no longer in equilibrium - The resultant force must act (horizontally) towards centre of circle / to the left - The centripetal force can only be provided by (an increase in) F - Increased vertical component of F means the vertical component of R must decrease (in order to balance W) So R must decrease	$\begin{aligned} & \mathrm{B} 1 \mathrm{x} \\ & 4 \mathrm{AO} \end{aligned}$	Any answer that mentions centrifugal force scores $0 / 4$ Ignore any statement that treats the centripetal force as an extra force Allow net or unbalanced or total for resultant throughout or $F \cos 30^{\circ}-R \sin 30^{\circ}$ increases (from 0 to $9.0(\mathrm{~N})$) / the (magnitude of the) horizontal component of F must exceed the (magnitude of the) horizontal component of R not a resultant force acts towards \mathbf{Y} e.g. Friction is the only force able to provide the centripetal force / only F has a component to the left Allow F provides the centripetal force Not the horizontal force must increase / increases or $F \sin 30^{\circ}+R \cos 30^{\circ}=W / W$ is the vector sum of F and $R / W=\left(F^{2}+\right.$ $\left.R^{2}\right)^{1 / 2}$ (and F increases while W remains constant) Total
	Total	6	
2 3	Level 3 (5-6 marks) Clear description and correct calculations leading to value of total energy (must include the negative sign) There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description and some correct calculations or Correct calculations (including the negative sign) There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	B1×6	Indicative scientific points may include: Description - Orbit above the equator / equatorial orbit - Orbit from west to east/same direction of orbit as Earth's rotation - Orbital period is 24 hours / 1 (sidereal) day $/ 23 \mathrm{hrs} 56 \mathrm{mins}(4 \mathrm{~s})$ - Orbit is circular / above the same point on the Earth Calculation - $E=(-) \frac{G M m}{r}$ - $E=\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 2500}{4.22 \times 10^{7}}$ $=(-) 2.4 \times 10^{10} \mathrm{~J}$ - $V=\frac{2 \pi r}{T} \omega r$ - $V=\frac{2 \pi \times 4.22 \times 10^{7}}{24 \times 3600}=3.07 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$ - $E=\frac{1}{2} m v^{2}$ - $E=\frac{1}{2} \times 2500 \times\left[3.07 \times 10^{3}\right]^{2}=1.2 \times 10^{10} \mathrm{~J}$ - Total energy $=-2.4 \times 10^{10}+1.2 \times 10^{10}=-1.2 \times 10^{10} \mathrm{~J}$ - Allow full credit for algebraic proof using $\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}$, $E=\left(-\frac{G M m}{r}, E=\frac{1}{2} m v^{2}\right.$ and total energy $=\mathrm{KE}+\mathrm{PE}$

		Level 1 (1-2 marks) Limited description or Limited calculations The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		Allow higher order answers in terms of Lagrange's Identity Examiner's Comments This part explored multiple ideas about geostationary orbits. It was accessible to most candidates, many of whom calculated the magnitude of the GPE correctly yet forgot that this value must be negative. Almost all candidates forgot that Gravitational Potential Energy is negative.
		Total	6	
2	i	Any sensible suggestion, e.g. Satellites used for global communication, instant access to news, weather forecasting etc.	B1	
	ii	$\begin{aligned} & \mathrm{g}=(6400 / 15300)^{2} \times 9.81 \\ & \mathrm{~g}=1.72\left(\mathrm{~N} \mathrm{~kg}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
	iii	Acceleration towards centre $=$ $1.72 \mathrm{~ms}^{-2}$ or centripetal force $=$ mass of satellite $\times 1.72 \mathrm{~N}$ $\begin{aligned} & \mathrm{T}^{2}=4 \times \pi^{2} \times 1.53 \times 10^{7} / 1.72 \\ & \mathrm{~T}=1.87 \times 10^{4}(\mathrm{~s}) \end{aligned}$	C1 C1 A1	ecf (b)(i) Allow 1.9
		Total	6	
2 5		Level 3 (5-6 marks) a structured combination of at least 6 statements taken from A, B and C or A and D a combination of at least 5 statements; script of a lower quality N.B. bonus given for any of E at any level The ideas are well structured providing significant clarity in the communication of the science. Level 2 (3-4 marks) a good combination of at least 4 statements taken from A and B or A and C or B and C or A and D a combination of at least 3 statements taken from two sections which are relevant together.	B1	A initial scenario - for circular orbit a centripetal force (of magnitude $\mathrm{mv}^{2} / \mathrm{r}$) is required or AW in terms of accelerations - this is provided by the gravitational force $\mathrm{GMm} / \mathrm{r}^{2}$ or G force just pulls radially inwards sufficiently to maintain orbit - the speed in orbit $\mathrm{v}=(\mathrm{GM} / \mathrm{r})^{1 / 2}$ B reverse thrust - G force causes rocket to spiral towards Earth when rocket slowed; - rocket speeds up in process - $\quad v$ in orbit is larger when radius r is smaller; condition for faster lower orbit can be achieved or T smaller because either v is larger or r / circumference is smaller or both or $2 \pi r / v$ is smaller C forward thrust

		There is partial structuring of the ideas with communication of the science generally clear. Level 1 (1-2 marks) at least 2 statements from A, B, C or D which are relevant together some attempt which is related to the question The ideas are poorly structured and impede the communication of the science. Level 0 (0 marks) Insufficient or relevant science.		- when rocket speeds up with engines fired forwards G force insufficient to hold orbit so spirals to larger orbit - slowing as it does so D energy approach - some p.e. goes to k.e. when rocket is slowed as it moves towards Earth - so vincreases - vice versa when rocket is accelerated E further comments - extra corrections needed to obtain circular orbit after manoeuvre (not mentioned in passage) - any other relevant statement not included above
		Total	6	
	i	Horizontal arrow pointing to the right.	B1	Judgement by eye Examiner's Comments The examiners were quite lenient in this series in terms of the precise direction of the arrow, which should point towards the centre of Mars.
	ii	$2.14 \times 10^{3}=\frac{2 \times \pi \times 9380 \times 10^{3}}{T}$ $T=2.75 \times 10^{4}(\mathrm{~s})$	C1	Allow 2SF answer Note: $2.75 \ldots \times 10^{n}$ scores 1 mark. Examiner's Comments Around four fifths of candidates got this right. Those that did not either poorly converted the radius from km or used the area rather than the circumference of the orbit.
	iii	$\begin{aligned} & \frac{G M m}{r^{2}}=\frac{m v^{2}}{r} \quad \text { or } \quad v^{2}=\frac{G M}{r} \\ & \left(2.14 \times 10^{3}\right)^{2}=6.67 \times 10^{-11} \times \\ & M / 9380 \times 10^{3} \\ & M=6.44 \times 10^{23}(\mathrm{~kg}) \end{aligned}$	C1 C1 A1	Allow ecf of answer for T from (a)(ii) Allow 2 SF answer Note: Use of 2.8×10^{4} seconds gives $6.3 \times 10^{23}(\mathrm{~kg})$ for 3 marks. Alternative Method for C1C1 - $M=4 \pi^{2} R^{3} /\left(T^{2} G\right)$ (Databook formula re-arranged with M as subject)

5.2 Circular Motion

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Total \& 6 \& \\
\hline 2
8 \& \& \begin{tabular}{l}
(For circular orbit) centripetal force provided by gravitational force (of attraction) \\
(Gravitational / centripetal) force is along line joining stars which must therefore be diameter of circle (AW)
\end{tabular} \& M1 \& \begin{tabular}{l}
Examiner's Comments \\
Only a minority of candidates related the gravitational force between the stars to the centripetal force required for circular motion to occur. This candidate has written the perfect answer (exemplar 5). \\
There were two popular insufficient answers; that if the stars were not diametrically opposite they would collide and that the centre of mass of the system had to be at the centre of the orbit. \\
Exemplar 5 \\
 the centripetal force. \\
* Grastatonal fore is drestly towards their ce whec means the centripetal for for on the on on Lous of ene grantationn forwe so the center of orbit must lie anern the line of teir covters as the \(\alpha\)
\end{tabular} \\
\hline \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& T=20.5 \times 86400\left(=1.77 \times 10^{6} \mathrm{~s}\right) \\
\& \text { and } R=1.8 \times 10^{10}(\mathrm{~m}) \\
\& m=16 \times \pi^{2} \times\left(1.8 \times 10^{10}\right)^{3} / \mathrm{G} \times \\
\& (20.5 \times 86400)^{2}
\end{aligned}
\] \\
giving \(m=4.4 \times 10^{30}\) so \(m=2.2\) \(M_{\odot}\)
\end{tabular} \& C1
C1

A1 \& | values of T and R scores first mark; both incorrect $0 / 3$ |
| :--- |
| correct substitution allowing π^{2} and G $m=16 \times 9.87 \times 1.8^{3} \times 10^{30} / 6.67 \times 10^{-11} \times 1.8^{2} \times 10^{12}$ |
| using $2 R$ gives $35.2 \times 10^{30}=17.6 \mathrm{M}_{\odot}$ or using $\mathrm{T}=1$ day gives $1850 \times$ $10^{30}=930 \mathrm{M}_{\odot}$ award $2 / 3$ |
| Examiner's Comments |
| This question tested the candidates' ability to interpret and substitute data into an elaborate formula and then evaluate it. The most common error was to write the formula with the correct substitutions but then to omit the square symbol against T. Candidates should be encouraged to consider whether their answers are reasonable before moving on to the next question. In the calculation (exemplar 6) shown here, is it possible that these stars could be four million times the mass of the Sun? The correct answer of 2.2 Sun masses seems very plausible and should give candidates confidence. |
| Exemplar 6 |

\hline
\end{tabular}

5.2 Circular Motion

	iii	$v=2 \pi R / T=2 \times 3.14 \times 1.8 \times 10^{10}$ $/ 1.8 \times 10^{6}$ (giving $v=6.3$ or 6.4×10^{4}) $\begin{aligned} & \Delta \lambda=(v / c) \lambda=(6.3 / 3) \times 10^{-4} \times 656= \\ & 0.14(\mathrm{~nm}) \end{aligned}$	C1	do not penalise repeated error for R or T ecf for incorrect v , gives $\Delta \lambda=v \times 2.2 \times 10^{-6}$ $\Delta \Lambda=0.28$ for $2 R ; \Delta \Lambda=2.9$ for 1 day and $\Delta \Lambda=5.7$ for both incorrect Examiner's Comments Most of the higher performing candidates completed this problem successfully. Two common errors among the remainder were to equate the formula for central force gravitational potential energy ($G M m / r$) to kinetic energy to find a value for the speed of the stars and to rewrite incorrectly metres in powers of 10 in nanometres.
		Total	7	

